Copper Toxicity

Introduction

<u>Copper:</u> is an essential element required by a number of enzymes involved in specific oxidase type reactions.

- -derived from plants (5-20 ppm)
- -legumes are higher than plants
- -absorbed in the intestinal tract and stored in the liver (40-70%)
- -normal copper levels are from 0.7 to 2.0 ppm

Copper Poisoning

Copper poisoning in feeder lambs is often the result of feeding improperly formulated mixed diets.

- -closely related to molybdenum toxicity
- -sheep are 10 times more susceptible than cattle
- -many outbreaks can be traced to feeding supplements that have been formulated for cattle and swine

Cause and Disease Process

- -triggered by stress
- -excessive copper stored in liver (>15ppm)
- -hemolytic crisis- destruction of red blood cells

Clinical Signs

- -chronic copper poisoning appears as an acute homlytic crisis with death occurring in 24-48 hours.
- -the animals suddenly go of feed and become weak
- -mucous membranes and white skin are a yellowish brown
- -hemoglobin in the urine is a dark red-brown color
- -the number of animals in a group may be low (5-10%), the death of an infected animal may reach 75%

Postmortem Findings

- -pale tan liver
- -dark green/black kidney

Diagnosis

Very few conditions cause a severe hemolytic crisis. Phenothiazine and onion poisoning cause similar symptoms.

A definite diagnosis relies on copper serum or the copper tissue levels.

Feed samples should be analyzed for copper and molybdenum concentrations before feeding

Treatment and Prevention

- -source should be identified and removed immediately
- -avoid stressful conditions
- -Treatment is based on inactivating the copper with molybdate and sulfate.
- drench with electrolytes and sodiumthiomolybdate to flusk Kidneys + bind copper lqt/hr